Plot many types of plots of parameter estimates. See examples for typical use cases.
plot_pars( fit, pars = "population", regex_pars = character(0), type = "combo", ncol = 1, prior = FALSE )
fit | An |
---|---|
pars | Character vector. One of:
|
regex_pars | Vector of regular expressions. This will typically just be the beginning of the parameter name(s), i.e., "^cp_" plots all change points, "^my_varying" plots all levels of a particular varying effect, and "^cp_|^my_varying" plots both. |
type | String or vector of strings. Calls |
ncol | Number of columns in plot. This is useful when you have many
parameters and only one plot |
prior | TRUE/FALSE. Plot using prior samples? Useful for |
A ggplot2 object.
For other type
, it calls bayesplot::mcmc_type()
. Use these
directly on fit$mcmc_post
or fit$mcmc_prior
if you want finer
control of plotting, e.g., bayesplot::mcmc_dens(fit$mcmc_post)
. There
are also a number of useful plots in the coda package, i.e.,
coda::gelman.plot(fit$mcmc_post)
and coda::crosscorr.plot(fit$mcmc_post)
In any case, if you see a few erratic lines or parameter estimates, this is
a sign that you may want to increase argument 'adapt' and 'iter' in mcp
.
# Typical usage. ex_fit is an mcpfit object. plot_pars(ex_fit) if (FALSE) { # More options plot_pars(ex_fit, regex_pars = "^cp_") # Plot only change points plot_pars(ex_fit, pars = c("int_3", "time_3")) # Plot these parameters plot_pars(ex_fit, type = c("trace", "violin")) # Combine plots # Some plots only take pairs. hex is good to assess identifiability plot_pars(ex_fit, type = "hex", pars = c("cp_1", "time_2")) # Visualize the priors: plot_pars(ex_fit, prior = TRUE) # Useful for varying effects: # plot_pars(my_fit, pars = "varying", ncol = 3) # plot all varying effects # plot_pars(my_fit, regex_pars = "my_varying", ncol = 3) # plot all levels of a particular varying # Customize multi-column ggplots using "*" instead of "+" (patchwork) library(ggplot2) plot_pars(ex_fit, type = c("trace", "dens_overlay")) * theme_bw(10) }